.
.
.
.
Click here for additional information
.
Biodefense Reference Library
Foreign Animal and Zoonotic Disease Center
 
One Medicine: One Health (Zoonotic Disease) Online Course

Presented by

Stephen M. Apatow, Director of Research and Development 
Humanitarian Resource Institute Biodefense Reference Library
Foreign Animal and Zoonotic Disease Center
[Vitae][Email]

ZOONOTIC DISEASES
NEMATODE


ANISAKIASIS

Centers for Disease Control and Prevention: Division of Parasitic Diseases
Anisakiasis

Disease Overview: Institutional Animal Care and Use Committee, University of California, Santa Barbara.

(Herring worm disease) A common parasitic infection from fish. The parasites are widely distributed. Human disease occurs where people eat raw or lightly smoked or salted saltwater fish or squid (e.g., in Japan, the Netherlands, Scandinavia and Central America). The causative agents are Anisakis, Phocanema and Contracaecum (Nematoda). There is no vaccine. 

RESERVOIR AND MODE OF TRANSMISSION:
Definitive hosts are marine mammals such as dolphins or seals. These pass the parasite's eggs in their feces. The eggs hatch and produce larvae which infect the first intermediate host, usually a crustacean. A fish may be the second intermediate host. Humans are aberrant hosts infected by eating fish. 
INCUBATION PERIOD:
Humans and animals. A few hours to a few weeks. 
CLINICAL FEATURES:
Humans. There may be fever, abdominal pain, vomiting, hematemesis, coughing, pseudoappendicitis, and possibly symptoms associated with intestinal perforation. Animals. Fish fail to thrive if heavily infected. 
PATHOLOGY:
Humans.The larvae usually remain in the intestine causing few lesions. However, they sometimes invade the stomach wall causing hematemesis and may lodge in the mesenteric veins or in the viscera where they induce eosinophilic granulomas and abscesses. Larvae may migrate up the esophagus to the oropharynx. There is a low grade eosinophilia. Animals. In fish, atrophy of the liver occurs and sometimes fatal infection of the heart. Visceral adhesions and muscle damage can be severe. 
DIAGNOSIS:
Humans. Stools may show occult blood. Mild leukocytosis and eosinophilia may be present. ELISA and RAST serologic tests may be tried but are not reliable in chronic disease. In acute infection, the larvae sometimes can be seen and removed endoscopically from the stomach. X-rays of the stomach may show a localized edematous, ulcerated area with an irregularly thickened wall, decreased peristalsis, and rigidity. Double contrast technique may show the threadlike larvae. Small bowel x-rays may show thickened mucosa and segments of stenosis with proximal dilation. Ultrasound examination of gastric and intestinal lesions may also be useful. In the chronic stage, x-rays and endoscopy of the stomach-but not of the bowels-may be helpful. The diagnosis is often made only at laparotomy with surgical removal of the parasite. Animals. Demonstrate the parasite in tissues of fish. 
PROGNOSIS:
Humans. The condition is rarely fatal. Animals. Wide distribution of the parasites and consequent disease results in difficulty in maintaining marine vertebrates in laboratories. 
PREVENTION:
Humans. Avoid raw or undercooked fish. Freezing fish kills larvae. Eviscerate fish immediately after catching. Animals. Impractical. 
TREATMENT:
Humans. Physical removal of larvae by gastroscopy or surgery. Animals. Not appropriate. Legislation Humans and animals. None. 

TRICHINOSIS

Centers for Disease Control and Prevention: Division of Parasitic Diseases
Trichinosis

Office International des Epizooties
Trichinellosis: Manual of standards Diagnostic Tests and Vaccines 2000

Disease Overview: Institutional Animal Care and Use Committee, University of California, Santa Barbara.

AGENT:
Trichinella spiralis, an intestinal nematode. 
RESERVOIR AND INCIDENCE
Swine, dogs, cats, rats and many wild animals. Worldwide. In the U.S., there has been a marked reduction in the prevalence of trichinosis both in humans and pigs; prevalence in commercial pork now ranges from nil to 0.7%. Fewer than 100 human cases are reported annually and usually have been as a result of eating homemade sausage and other meat products using pork, horse meat, or arctic mammals. 
TRANSMISSION:
In the natural cycle, larvae develop into adult worms in the intestines when a carnivore ingests parasitized muscle. Pigs generally become infected by feeding on uncooked scraps or, less often, by eating infected rats. In humans, infection occurs by eating insufficiently cooked meat. In the epithelium of the small intestine, larvae develop into adults. Gravid female worms then produce larvae, which penetrate the lymphatics or venules and are disseminated via the bloodstream throughout the body. The larvae become encapsulated in skeletal muscle. 
DISEASE IN ANIMALS:
Usually subclinical. 
DISEASE IN HUMANS:
Clinical disease in humans is highly variable and can range from inapparent infection to a fulminating, fatal disease depending on the number of larvae ingested. Sudden appearance of muscle soreness and pain, together with edema of upper eyelids are common early and characteristic signs. These are sometimes followed by subconjunctival, subungual and retinal hemorrhages, pain and photophobia. Thirst, profuse sweating, chills, weakness, prostration and rapidly increasing eosinophilia may follow. GI symptoms may also occur. Remittent fever, cardiac and neurologic complications may appear. Lastly, death due to myocardial failure may occur. 
DIAGNOSIS:
Serologic testing and muscle biopsy. 
TREATMENT:
Treatment is principally supportive, since in most cases recovery is spontaneous. Mebendazole, thiabendazole, or albendazole can be given. 
PREVENTION/CONTROL:
Cooking (at 77oC [171oF] or above) destroys the parasite. Freezing meat up to 15 cm at 5oF for 30 days or -13oF for 10 days will destroy the parasite. Thicker pieces need to be frozen at the lower temperature for at least 20 days. These temperatures will not kill the cold-resistant Arctic strains, however. Gamma irradiation will kill the parasite. Prevent pigs from gaining access to rats or uncooked offal. 

ANGIOSTRONGYLIASIS

Centers for Disease Control and Prevention: Division of Parasitic Diseases
Angiostrongyliasis

Disease Overview: Institutional Animal Care and Use Committee, University of California, Santa Barbara.

SYNONYMS:
Angiostrongylosis, eosinophilic meningitis or meningoencephalitis (A. cantonensis), abdominal angiostrongylosis (A. costaricensis). 
ETIOLOGY:
Two metastrongylids, Angiostrongylus (Morerastrongylus) costaricensis and A. cantonensis, are the etiologic agents. The first species is responsible for abdominal angiostrongyliasis, and the second one for eosinophilic meningitis or meningoencephalitis.The definitive hosts of both species are rodents; man is an accidental host. Both species require mollusks as intermediate hosts for the completion of their life cycle. The main definitive host of A. costaricensis is the cotton rat, Sigmondon hispidus, in which the adult nematode lodges in the mesenteric arteries and their branches on the intestinal wall. The first-stage larva emerges from eggs laid in the arteries, penetrates the intestinal wall, and is then carried with the fecal matter to the exterior. In order to continue their development, the first-stage larvae have to be ingested by a slug. Vaginulus ameghini, in which they change successively into second- and third-stage larvae. When the infective third-stage larva is ingested by a rodent, it seeks the ileocecal region, where it penetrates the intestinal wall and locates in the lymphatic vessels (both inside and outside the abdominal lymph nodes). In this location the larvae undergo two molts before migrating to their final habitat, the mesenteric arteries of the cecal region. Oviposition begins after about 18 days. and the first-stage larvae appear in the feces 24 days after infection (prepatent period). In man, an accidental host. the parasite can reach sexual maturity and produce eggs, but the eggs usually degenerate, causing a granulomatous tissue reaction. The development cycle of A. cantonensis is similar to that of A. costaricensis. The intermediate hosts are various species of land snails, slugs, and freshwater snails. The definitive hosts can become infected by ingesting infected snails, or plants and water contaminated by them with the third larvae. In addition, infection can occur as a result of consuming transfer hosts (paratenic hosts), such as crustaceans, fish, amphibians, and reptiles, which in turn have eaten infected mollusks (primary intermediate hosts). The definitive hosts of A. cantonensis are primarily various species of the genus Rattus. When they enter a rat's body, the third-stage larvae (which developed in a mollusk) penetrate the intestine and are carried by the circulatory system to the brain, where they undergo two more molts and become young adult parasites. From the cerebral parenchyma they migrate to the surface of the brain. They remain for a time in the subarachnoid space and later migrate to the pulmonary arteries, where they reach sexual maturity and begin oviposition. The eggs hatch in the pulmonary arterioles, releasing the first larva, which migrates up the trachea, is swallowed, and is eliminated with the feces. Mollusks are infected by ingesting fecal matter of infected rodents. In man, who is an accidental host, the larvae and young adults of A. cantonensis generally die in the brain, meninges, or medulla oblongata. The nematode can occasionally be found in the lungs. 
GEOGRAPHIC DISTRIBUTION AND OCCURRENCE:
Abdominal angiostrongyliasis, caused by A. costaricensis, is a parasitosis described a few years ago in Costa Rica; it is one of the most recently recognized zoonoses. Human disease has also been confirmed in Honduras, El Salvador, and Brazil. Suspected clinical cases have occurred in Nicaragua and Venezuela. In Panama, the adult parasite was found in five species of rodents belonging to three different families. In the past few years, the parasite has been found in several specimens of Sigmodon hispidus in Texas, USA. Ozyomys caliginosus in Colombia; and slugs in Guayaquil, Ecuador. The parasitosis is probably much more widespread than is currently recognized. A. costaricensis has not been recorded outside the Americas. Human cases of parasitism by A. cantonensis have occurred in Thailand, Vietnam, Kampuchea, the Philippines, Indonesia, Taiwan, Japan, Australia, and several Pacific islands. The parasite is much more widely distributed, and its existence in rats has been confirmed in southern China, India, Malaysia, Sri Lanka, Madagascar, Mauritius, and Egypt. Until recently, the geographic distribution of A. cantonensis was thought to be limited to Asia, Australia, the Pacific islands, and Africa. However, in recent years its presence has been confirmed in Cuba, where infected rats (Rattus norvegicus) and mollusks have been found; likewise, five human cases of meningoencephalitis have been attributed to A. cantonensis in that country. It is believed that the parasite was introduced to the island some years ago by rats from a ship from Asia. In a study carried out on rat species (R. norvegicus, R. rattus, and R. exulans) on the Hawaiian and Society Islands, the parasite was found in more than 40% of the specimens captured. In Egypt, 32.7% of 55 specimens of R. norvegicus harbored the parasite. In the province of Havana, Cuba, 12 out of 30 captured R. norvegicus were infected. In view of the worldwide distribution of R. norvegicus and R. rattus, these rodents were examined for the parasite in Puerto Rico, London, and New Orleans, but the results were negative. Eosinophilic meningitis associated with infection by A. cantonensis has been recorded in several hundred patients in endemic areas. 
THE DISEASE IN MAN:
The clinical manifestations of abdominal angiostrongyliasis caused by A. cantonensis are moderate but prolonged fever, abdominal pain on the right side. and, frequently, anorexia, diarrhea, and vomiting. Leukocytosis is characteristic (20,000 to 50,000 per mm3), with marked eosinophilia (11 to 82%). Palpation sometimes reveals tumoral masses or abscesses. Rectal examination is painful, and a tumor can occasionally be palpated. Lesions are located primarily in the ileocecal region, the ascending colon. appendix, and regional lymph nodes, but they are also found in the small intestine. Granulomatous inflammation of the intestinal wall can cause partial or complete obstruction. Appendicitis was the preoperative. 
DIAGNOSIS:
In 34 cases, all but two of the children survived and recovered. The highest prevalence (53%) was found in children 6 to 13 years old, and twice as many boys as girls were affected. Ectopic localizations may occur; when the liver was affected in some Costa Rican patients, the syndrome resembled visceral larva migrans. Serologic studies carried out in Australia, in human populations living in localities where the infection occurs in rats and those living in other places where it does not, indicate that many human infections are asymptomatic. 
THE DISEASE IN ANIMALS:
In rodents, A. costaricensis produces lesions that are located primarily in the cecum, as well as focal or diffuse edema of the subserosa, a reduction in mesenteric fat, and swelling of the regional lymph nodes. In highly parasitized animals, eggs and larvae may be found in various viscera of the body. No significant difference in weight between parasitized and nonparasitized animals has been confirmed. Rats infected by A. cantonensis may show consolidation and fibrosis in the lungs. However, the physical appearance of the animals does not reflect the degree of pathologic changes. For both parasites, the prevalence of the infection is greater in adult than in young rodents. 
SOURCE OF INFECTION AND MODE OF TRANSMISSION:
Several species of rodents are known to serve as definitive hosts of A. costaricensis: Sigmodon hispidus, Rattus rattus, Zygodontomys microtinus, Liomys adspersus, 0ryzomys fulvescens, and 0. caliginosus; also, natural infection has been found in a coati (Nasua narica) and marmosets (Saguinus mystax). In a study carried out in Panama, the highest prevalence of the infection was found in the cotton rat S. hispidus, which was also the most abundant rodent in the six localities studied. The cotton rat inhabits areas close to dwellings in both tropical and temperate America. it is omnivorous, feeding on both plants and small vertebrate and invertebrate animals, including slugs (V. ameghini). All these facts indicate that the cotton rat is a prime reservoir and that it plays an important role in the epidemiology of the parasitosis. Rodents are infected by ingesting infected mollusks. Another probable source of infection is plants contaminated with mollusk secretions "slime") containing third-stage infective larvae of the parasite. The manner in which man contracts the infection is not well known. Infection probably occurs by ingestion of poorly washed vegetables containing small slugs or their secretions. It is believed that children can become infected while playing in areas where slugs are abundant by transferring snail secretions found on vegetation to their mouths. An increase in cases in children occurs in Costa Rica during the rainy season, when slugs are most plentiful. Humidity is an important factor in the survival of both the first- and third-stage larvae in the environment, since they are susceptible to desiccation. The parasite species in the Far East (A. cantonensis) has been found in at least ten different species of the genus Rattus and in Bandicota indica and Melomys littoralis. These rodents, natural definitive hosts, are infected by consuming mollusks or paratenic hosts that harbor third-stage larvae. The infection rate of the mollusks is usually high; both the prevalence and the number of larvae an individual mollusk can harbor vary according to the species. Man, who is an accidental host, is infected by consuming raw mollusks and also paratenic hosts such as crustaceans or fish. The ecology of angiostrongyliasis is closely related to the plant community, since it ultimately supports the appropriate mollusks and rodents. The frequency of the human parasitosis depends on the abundance of these hosts and the degree to which they are infected, and, also, in the case of A. cantonensis, on eating habits (consumption of raw mollusks, crustaceans, and fish). 
DIAGNOSIS:
The spinal fluid characteristically shows elevated protein and an eosinophilic pleocytosis. Occasionally, the parasite can be recovered from spinal fluid. Peripheral eosinophilia with a low-grade leukocytosis is common. A serologic test is available from the Centers for Disease Control and Prevention; its sensitivity and specificity are not established. CT and MRI may show a central nervous system lesion. 
TREATMENT:
No specific treatment is available; however, levamisole, albendazole, thiabendazole (25 mg/kg three times daily for 3 days), or ivermectin can be tried. Symptomatic treatment with analgesics or corticosteroids may be necessary. The illness usually persists for weeks to months, the parasite dies, and the patient then recovers spontaneously, usually without sequelae. However, fatalities have been recorded. 
CONTROL:
At least theoretically, angiostrongyliasis could be controlled by reducing rodent and mollusk populations. Preventive measures at the individual level consist of washing vegetables thoroughly, washing hands after garden or field work, not eating raw or undercooked mollusks and crustaceans, and not drinking water that may be unhygienic. 

ANCYLOSTOMIASIS

Centers for Disease Control and Prevention: National Center for Infectious Diseases
Ancylostoma infection

Disease Overview: Institutional Animal Care and Use Committee, University of California, Santa Barbara.

(Uncinariasis, Necatoriasis, Hookworm Disease) 

AGENT:
The causative agents are mainly Necator americanus and Ancylostoma duodenale; occasionally A. ceylanicum and A. caninum. 
RESERVOIR AND INCIDENCE
A common worm infection of humans and domestic dogs and cats in various tropical and subtropical countries where disposal of human feces is inadequate. The reservoirs are humans, dogs, and cats. 
TRANSMISSION:
Adult worms, living in the small intestines of humans, produce eggs which pass on to the ground in feces. The eggs hatch and go through three larval stages. Human infection results from the third-stage larvae which survive in soil for several weeks in moist and warm conditions. Animals and man become infected by contact with infected soil, the larvae penetrating through skin or mucosa of the digestive tract. The parasites then migrate through the blood capillaries to the lung, eventually to be coughed up and swallowed. They reach maturity and complete their cycle in the intestines. 
DISEASE IN ANIMALS:
Factors such as the weight of infection and nutritional state of the animal are important. Loss of blood together with malnutrition produce anemia. Severe enteritis causes hemorrhagic diarrhea and weight loss from intestinal malabsorption. Prenatal infection of the dog causes death of the fetal pups. Mild infections generally cause no clinical signs. 
DISEASE IN MAN:
The condition is often asymptomatic. Self-limiting vesicular/pustular skin eruptions may appear at the site of larval entry. A. caninum does not penetrate human skin beyond the epidermis. With other species chronic symptoms due to iron deficiency anemia may occur. Rarely there is tracheitis and coughing due to lung infiltration with parasites. 
DIAGNOSIS:
Fecal flotation 
TREATMENT:
Pyrantel pamoate, mebendazole, albendazole, levamisole, or tetrachloroethylene. 
PREVENTION/CONTROL:
Educate the public to the dangers of soil contamination by feces. Wear shoes! Screen feces from persons and animals from endemic areas. Keep kennel floors dry and avoid feeding animals on the ground. 

CAPILLARIASIS

Centers for Disease Control and Prevention: Division of Parasitic Diseases
capillariasis

Disease Overview: Institutional Animal Care and Use Committee, University of California, Santa Barbara.

AGENT:
The causative agents are Capillaria hepatica (hepatic form), C. philippinensis (intestinal form) and C. aerophila (respiratory form). 
RESERVOIR AND INCIDENCE
C. hepatica and C. aerophila are very rare infections with isolated cases reported from North, Central and South America, Asia, and Europe. C. philippinensis is endemic in certain areas of the Philippines and cases have been reported from Thailand and Japan. Humans are the reservoir for C. philippinensis. With C. hepatica, rodents are the reservoirs. Cats and dogs are the reservoir for C. aerophila. Peromyscus maniculatus and Cletheronomys gapperi are the major hosts in North America. 
TRANSMISSION:
Humans are infected by eating raw fish containing infective larvae. The worm parasite lives in the intestines of humans and autoinfection occurs. Human feces contain large numbers of ova which contaminate watercourses and infect freshwater fish. Humans may be infected by the ingestion of ova in the soil also. 
DISEASE IN ANIMALS:
Infection with C. aerophila causes coughing, sneezing, and nasal discharge in dogs, cats, and foxes. Worms of C. hepatica mature and deposit eggs in liver tissue causing a local chronic inflammatory response in mice and rats. 
DISEASE IN MAN:
C. hepatica: acute and subacute hepatitis. The liver lesions consist of enlargements with foci of granulation tissue containing worms and ova. C. philippinensis: progressive weight and protein loss due to diarrhea and malabsorption. The jejunal villi are obliterated with massive accumulations of worms and ova. C. aerophila: fever and coughing. Worms present in epithelial lining of respiratory tract causing pneumonitis. 
DIAGNOSIS:
Liver or intestinal biopsy, necropsy, clinical signs & symptoms. Fecal exam for ova, larva, or adults. 
TREATMENT:
Albendazole, Thiabendazole, Mebendazole. 
PREVENTION/CONTROL:
Do not eat uncooked fish and other aquatic animal life in endemic areas. Control rodents and improve hygiene. Prevent pica. Sanitary disposal of feces. 

FILARIASIS

Centers for Disease Control and Prevention: National Center for Infectious Diseases
filariasis

Disease Overview: Institutional Animal Care and Use Committee, University of California, Santa Barbara.

(Brugiasis) 

AGENT:
The commonest causative agent is Wuchereria bancrofti, which is not zoonotic. Brugia malayi is zoonotic. Dirofilaria immitis may occasionally infect humans. 
RESERVOIR AND INCIDENCE
B. malayi has been identified in Malaya and the Philippines. D. immitis occurs in dogs in North and South America, Australia, India, the Far East and Europe. Wild monkeys and felines are the reservoir for B. malayi. 
TRANSMISSION:
Transmission to humans is via the bite of a mosquito vector (Mansonia and Anopheles). These, on biting humans, release microfilariae on to skin which enter the body through the puncture wound and pass via the lymphatics to lymph nodes. The worms are viviparous, producing microfilaria. These appear in the blood and reinfect the biting insect. 
DISEASE IN ANIMALS:
D. immitis is found in the right ventricle of dogs and in the pulmonary artery. Mild infection causes no signs, but long continued infection leads to cardiac insufficiency with ascites and passive congestion. 
DISEASE IN MAN:
B. malayi: Repeated bouts of fever, lymphadenopathy, lymphangitis and abscesses occur. This leads to lymphatic obstruction and massive lymphedema followed by fibrosis (so-called elephantiasis) especially in the legs. D. immitis: Initial symptoms include cough, chest pain, or hemoptysis. However, the filariae die in the human pulmonary vasculature and consequently nodules have been found in the skin or as solitary 1-2 cm "coin" lesions in the periphery of the lungs. 
DIAGNOSIS:
Diagnosis is established by finding microfilariae in the blood. Serologic testing is available but false-positive and false-negative reactions occur. 
TREATMENT:
Diethylcarbamazine. 
PREVENTION/CONTROL:
Diethylcarbamazine or Ivermectin can be given as a prophylaxis. Control vectors and avoid their bites. Prophylactic treatment of dogs. 

VISCERAL LARVAL MIGRANS

Centers for Disease Control and Prevention: National Center for Infectious Diseases
toxocariasis

Disease Overview: Institutional Animal Care and Use Committee, University of California, Santa Barbara.

(Toxocariasis) 

AGENT:
Most cases of visceral larval migrans (VLM) are due to Toxocara canis, an ascarid of dogs and other canids, but in a few cases Toxocara cati in domestic cats has been implicated and rarely Baylisascaris procyonis of raccoons. 
RESERVOIR AND INCIDENCE
The reservoir mechanism for T. canis is latent infections in female dogs which are reactivated during pregnancy. Transmission from mother to puppies is via the placenta and milk. The life cycle of T. cati is similar, but transplacental transmission does not occur. Human infections are sporadic and occur worldwide. 
TRANSMISSION:
Infection is generally in dirt-eating young children who ingest T. canis or T. cati eggs from soil or sand contaminated with animal feces, most often from puppies. Direct contact with infected animals does not produce infection, as the eggs require a 3 to 4 week extrinsic incubation period to become infective; thereafter, eggs in soil remain infective for months to years. In humans, hatched larvae are unable to mature and continue to migrate through the tissues for up to 6 months. Eventually they lodge in various organs, particularly the lungs and liver and less often the brain, eyes, and other tissues, where they produce eosinophilic granulomas up to 1 cm in diameter. 
DISEASE IN ANIMALS:
The first indication of infection in young animals is lack of growth and loss of condition. Infected animals have a dull coat and often are "potbellied". Worms may be vomited and are often voided in the feces. In the early stages, pulmonary damage due to migrating larvae may occur; this may be complicated by bacterial pneumonitis, so that respiratory distress of variable severity may supervene. Diarrhea with mucus may be evident. In severe infections of puppies, verminous pneumonia, ascites, fatty degeneration of the liver, and mucoid enteritis are common. Cortical kidney granulomas containing larvae are frequent in young dogs. 
DISEASE IN MAN:
Migrating larvae induce fever, cough, wheezing; hepatomegaly, and sometimes splenomegaly and lymphadenopathy are present. The acute phase may last 2-3 weeks, but resolution of all physical and laboratory findings may take up to 18 months. Leukocytosis is marked due to eosinophils. Hyperglobulinemia occurs when the liver is extensively invaded. Ocular toxocariasis results in a eosinophilic granuloma of the retina that may be mistaken for retinoblastoma. 
DIAGNOSIS:
ELISA, no parasitic forms can be found by fecal exam. 
TREATMENT:
Thiabendazole, Mebendazole, or Ivermectin. Corticosteroids, antibiotics, antihistamines, and analgesics are given for symptomatic relief. Treatment for Ocular Toxocariasis includes the above plus vitrectomy and laser photocoagulation. 
PREVENTION/CONTROL:
Disease in humans is best prevented by periodic treatment of puppies, kittens, and nursing dogs and cats. Children should be supervised to prevent pica; their hands should be washed after playing in soil and sand; and play areas should be protected from animal feces. 

CUTANEOUS LARVAL MIGRANS

Centers for Disease Control and Prevention: National Center for Infectious Diseases
cutaneous larva migrans

Disease Overview: Institutional Animal Care and Use Committee, University of California, Santa Barbara.

(Creeping Eruption) 

AGENT:
Caused by the larvae of the dog and cat hookworms, Ancylostoma braziliense and Ancylostoma caninum. A number of other animal hookworms, gnathostomiasis, and strongyloidiasis are rarely also causative agents. 
RESERVOIR AND INCIDENCE
Cutaneous Larval Migrans is prevalent throughout the tropic and subtropics. Human infection is common in SE U.S., particularly where people come in contact with moist sandy soil (e.g., beaches, children's sand piles) contaminated by dog or cat feces. 
TRANSMISSION:
direct skin contact with larvae. soil to skin contact. contamination with animal feces. 
DISEASE IN ANIMALS:
Same as Ancylostomiasis. 
DISEASE IN MAN:
At the site of larval entry, particularly on the hands or feet, up to several hundred minute, intensely pruritic erythematous papules appear. Two to 3 days later, serpiginous eruptions appear as the larvae migrate at a rate of several millimeters a day; the parasite lies slightly ahead of the advancing border. The process continues for weeks or up to a year, and the lesions may remain severely pruritic, vesiculate, and become encrusted and secondarily infected. Without treatment, the larvae eventually die and are absorbed. 
DIAGNOSIS:
Presumptive - Characteristic clinical manifestations. Etiologic - ID of agent by biopsy in skin section but this is usually very difficult to achieve. Most cases are really not confirmed. No valid serodiagnostic tests currently available. 
TREATMENT:
Simple transient cases require no treatment. Albendazole or thiabendazole. Antihistamines and antibiotic ointments. 
PREVENTION/CONTROL:
Minimize contact (e.g., wear shoes!). Decontaminate environment: 10 lbs/ 100 sq ft. sodium borate - gravel/clay dog run; 1% sodium hypochlorite solution - cement dog run. Prevent environmental contamination. Public health education. 

OESOPHAGOSTOMIASIS

Disease Overview: Institutional Animal Care and Use Committee, University of California, Santa Barbara.

(Nodular Intestinal Worm Infection) 

AGENT:
The causative agents are Oesophagostomum stephanostomum, bifurcum, and aculeatum. 
RESERVOIR AND INCIDENCE
The parasite lives in the intestines of various primates and sometimes humans. These definitive hosts can sometimes serve as intermediate hosts. It occurs mainly in Africa, but occasionally in South America and Asia. 
TRANSMISSION:
Eggs passed in feces release larvae which infect the definitive host on ingestion. The parasite invades the intestinal wall to form nodules. The fourth stage larvae which develop in these nodules migrate to the lumen of the large intestine to form the adult worm and complete the life cycle. 
DISEASE IN ANIMALS:
Mild infection is subclinical. Abdominal pain follows more severe infection with diarrhea or even dysentery. Death in the NHP may ensue from perforation of the intestine and peritonitis. 
DISEASE IN HUMANS:
Mild infection goes unnoticed but sometimes abdominal pain, and GI bleeding and even peritonitis occur. Granulomatous nodules in the intestinal wall contain larvae and parasites. These may be secondarily infected and lead to abscesses. 
DIAGNOSIS:
Fecal flotation. Culture to obtain larvae for species ID. 
TREATMENT:
Anthelmintic therapy. 
PREVENTION/CONTROL:
Fecal screening of NHP's Wearing of protective clothing and gloves. Ensure good personal hygiene. Sanitary disposal of feces is important. 

STRONGYLOIDIASIS

Centers for Disease Control and Prevention: Division of Parasitic Diseases
strongyloidiasis

Disease Overview: Institutional Animal Care and Use Committee, University of California, Santa Barbara.

AGENT:
Strongyloidiasis is caused by infection with Strongyloides stercoralis. 
RESERVOIR AND INCIDENCE
The condition is an infection of humans, but dogs, cats, and primates have been found naturally infected. The disease is endemic in tropical and subtropical regions; although the prevalence is generally low, in some areas disease rates exceed 25%. In the USA, the disease is endemic in southern wet areas. 
TRANSMISSION:
The parasite is uniquely capable of maintaining its life cycle both within the human host and in soil. Infection occurs when filariform larvae in soil penetrate the skin, enter the bloodstream, and are carried to the lungs, where they escape from capillaries into alveoli and ascend the bronchial tree to the glottis. The larvae are then swallowed and carried to the duodenum and upper jejunum, where maturation to the adult stage takes place. The parasitic female, generally held to be parthenogenetic, matures and lives embedded in the mucosa, where its eggs are laid and hatch. Rhabditiform larvae, which are noninfective, emerge, and most migrate into the intestinal lumen to leave the host via the feces. The life span of the adult worm may be as long as 5 years. In the soil, the rhabditiform larva metamorphose into the infective (filariform) larvae. However, the parasite also has a free-living cycle in soil, in which some rhabditiform larvae develop into adults that produce eggs from which rhabditiform larvae emerge to continue the life cycle. Internal autoinfection takes place in the lower bowel when some rhabditiform larvae, instead of passing with the feces, develop into filariform larvae that penetrate the intestinal mucosa, enter the intestinal lymphatic and portal circulation, are carried to the lungs, and return to the small bowel to complete the cycle. 
DISEASE IN ANIMALS:
Young dogs and cats have thin skins which allow massive infection to penetrate, giving severe dermatitis, inappetence, coughing and even bronchopneumonia. Vomiting occurs, as does severe dermatitis during the period of larval penetration. 
DISEASE IN MAN:
Pruritic dermatitis is seen at sites of larval penetration. Diarrhea, epigastric pain, nausea, malaise, weight loss, coughing, rales, transient pulmonary infiltrates are also seen. In the hyperinfection syndrome, autoinfection is greatly increased, resulting in a marked increase in the intestinal worm burden and in massive dissemination of filariform larvae to the lungs and most other tissues, where they can cause local inflammatory reactions and granuloma formation. Severe diarrhea, bronchopneumonia, and ileus can result. 
DIAGNOSIS:
Diagnosis requires finding the larval stages in feces or duodenal fluid. ELISA and IFA serologic tests are being developed. 
TREATMENT:
Thiabendazole, albendazole, mebendazole, cambendazole, ivermectin, or levamisole. 
PREVENTION/CONTROL:
Rigid attention to hygienic habits, including use of footwear in endemic areas. Sanitary disposal of feces. Fecal exams of monkeys, dogs, and cats in quarantine. 

TRICHOSTRONGYLOSIS

Disease Overview: Institutional Animal Care and Use Committee, University of California, Santa Barbara.

(Trichostrongyliasis, Trichostrongylosis) 

AGENT:
Several species of Trichostrongylus including Trichostrongylus axei, T. affinis, T. colubriformis, and many others. RESERVOIRS AND INCIDENCE: The reservoirs of most of the species of Trichostrongylus are domestic and wild herbivores. Trichostrongylids are very common parasites in domestic ruminants and their distribution is worldwide. 
TRANSMISSION:
The sources of infection are soil and vegetation, in which the eggs deposited with the animal host's feces develop in a few days to the infective larval stage. Man and animals are infected orally. Man acquires the infection mainly by consuming raw vegetables contaminated with the infective larvae. Another important factor in transmission is the preparation and use of animal manure as fuel. 
DISEASE IN ANIMALS:
In horses, these worms produce a chronic catarrhal gastritis and may result in weight loss. The lesions comprise nodular areas of thickened mucosa surrounded by a zone of congestion and covered with a variable amount of mucus. The lesions may be rather small and irregularly circumscribed, or may coalesce and involve most or all of the glandular portion of the stomach, and erosions and ulcerations may be seen. In ruminants, gastritis with superficial erosion of the mucosa, hyperemia, and diarrhea may result. Protein loss from the damaged mucosa and anorexia cause hypoproteinemia and weight loss. 
DISEASE IN MAN:
Most cases asymptomatic. Severe infections - diarrhea, blood in stool, abdominal cramps, and emaciation. 
DIAGNOSIS:
:Flotation and fecal culture (identification of larvae used to distinguish between species). 
TREATMENT:
Pyrantel pamoate, mebendazole, or levamisole. 
PREVENTION/CONTROL:
Regular deworming of animals. Preventive measures for humans consist of improved food, environmental, and personal hygiene. In endemic areas, raw vegetables or other foods should not be eaten. Pasture management is important. Most of the larvae die in a field left ungrazed for a month. 

ASCARIASIS

Centers for Disease Control and Prevention: Division of Parasitic Diseases
ascariasis

Disease Overview: Institutional Animal Care and Use Committee, University of California, Santa Barbara.

(Roundworm infection, ascaridiasis) A common, but usually mild, roundworm infection of both humans and animals, occurring worldwide. There is doubt whether the worms cross between species. The causative agent in humans is usually Ascaris lumbricoides. Ascaris suum in pigs is considered occasionally a zoonotic infection (Nematoda). There is no vaccine. 

RESERVOIR AND MODE OF TRANSMISSION:
A. lumbricoides has its reservoir in humans and in contaminated soil. A. suum occurs in pigs. Eggs are passed in feces and become infective after two weeks. Infection is by the ingestion of eggs in soil or undercooked food. Eggs hatch in the gut, penetrate its wall and reach the lungs via the bloodstream. Larvae develop in the lungs, ascend the trachea and are swallowed and mature in the gut. Egg-laying begins 45-60 days after initial infection. 
INCUBATION PERIOD:
Humans. About two months. Animals. Development of A. suum in the pig is said to be quicker than in the human. 
CLINICAL FEATURES:
Humans. The condition is usually asymptomatic but there may be fever with asthma, spasmodic coughing and possibly pneumonitis. Abdominal pain, and even bowel or bile duct obstruction, is possible. Occasionally migrating larvae cause symptoms referable to the brain, eyes, kidneys and liver. Animals. Migrating larvae cause irregular breathing and coughing. Heavy infection gives abdominal pain with diarrhoea. Suckling pigs are most affected. 
PATHOLOGY:
Humans. Eosinophilia and pulmonary eosinophilic infiltration occur. Liver abscesses and cholangitis are sometimes seen. Animals. Larvae migrating through the lung cause pneumonia. Worms in the intestine give enteritis. 
DIAGNOSIS:
Humans. Identify eggs or adult worms in feces. Larvae in sputum or gastric washings are diagnostic. Animals. Examine feces for eggs, or monitor worms passed rectally or via mouth and nose. An egg count of more than 1OOO/g of feces indicates clinical disease. 
PROGNOSIS:
: Humans. The condition is rarely fatal. Aberrant larvae in brain, eyes and kidney can give severe symptoms. Animals.Rarely fatal. 
PREVENTION:
Humans. Sanitary disposal of feces coupled with good personal and food hygiene are essential. Animals. Worm and wash sows before farrowing. Rear pigs on concrete or avoid close confinement on soil. 
TREATMENT:
Humans and animals. Pyrantel pamoate is the treatment of choice. Stools should be rechecked at 2 weeks and patients retreated until all ascarids are removed. 
LEGISLATION:
Humans and animals. None. 
.



Copyright © 1994-2010 Humanitarian Resource Institute.  All rights reserved